IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal
نویسندگان
چکیده
BACKGROUND AND AIMS The stimulatory and inhibitory role of ethylene and auxin, respectively, in leaf abscission (leaf drop) is well documented. More recently, IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptides and their putative interacting receptor-like-kinase partners, HAESA and HAESA-like2, were shown to be essential components in Arabidopsis floral organ abscission. Prior to research on IDA, it was reported that bean (Phaseolus vulgaris) leaf abscission required a diffusible signal that emanated from the vascular tissue. We were interested in determining whether the IDA signalling path might regulate abscission in plants other than Arabidopsis and whether IDA might act as a diffusible signal in abscission. METHODOLOGY Quantitative polymerase chain reaction was used to monitor gene expression and a GUS reporter gene construct used to determine the need for a diffusible signal in tomato. PRINCIPAL RESULTS We identified 12 IDA-like and 11 HAESA-like genes in soybean (Glycine max) and monitored their gene expression in abscission in relation to the expression of several cell-wall-modifying proteins and aminocyclopropane-1-carboxylic acid synthases. Ethylene evoked the expression of several IDA-like genes in abscission zones (AZ), but also to a lesser degree in the adjacent petiole tissue. Surprisingly, IDA-like gene expression was very high in senescent soybean leaves. We identified five IDA-like genes in tomato (Solanum lycopersicum). Only one IDA-like gene was expressed in the tomato AZ and its expression was approximately equal in the AZ and petioles, but no IDA-like gene showed significant expression in leaves at up to 96 h of exposure to ethylene. CONCLUSIONS IDA-like gene expression is up-regulated during soybean and tomato abscission but up-regulation was not limited to the AZ. Cell separation in the AZ cortex of tomato does not require a diffusible signal emanating from the stele. A role for IDA in soybean and tomato leaf abscission is discussed.
منابع مشابه
Comparative study of cellulases associated with adventitious root initiation, apical buds, and leaf, flower, and pod abscission zones in soybean.
Cellulase activity was measured in soybean (Glycine max) leaf abscission zones, flower abscission zones, pod abscission zones, apical buds, and adventitious rooting hypocotyls. Immunoprecipitation data showed that a cellulase immunologically similar to the bean abscission cellulase (isoelectric point 9.5) is present in soybean leaf, flower, and pod abscission zones, but is not present in soybea...
متن کاملProgrammed cell death occurs asymmetrically during abscission in tomato.
Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identifie...
متن کاملSuppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission.
Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using...
متن کاملIdentification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the c...
متن کاملSoybean Endo-β-Mannanase GmMAN1 Is Not Associated with Leaf Abscission, but Might Be Involved in the Response to Wounding
The objective of this work is to investigate the relationship between endo-β-mannanase and leaf abscission, and response to wounding in soybean (Glycine max). An endo-β-mannanase gene GmMAN1 was cloned from the abscission zone in petiole explants, and was heterologously expressed in E. coli. Polyclonal antibodies were raised against the fusion protein. The increases in activity, isoform numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012